Explore SciBite’s full suite of solutions to unlock the potential of your data.
Discover how SciBite’s powerful solutions are supporting scientists and researchers.
Explore expert insights, articles, and thought leadership on scientific data challenges.
Discover our whitepapers, spec sheets, and webinars for in-depth product knowledge.
Explore SciBite’s full suite of solutions to unlock the potential of your data.
Explore SciBite’s full suite of solutions to unlock the potential of your data.
Discover how SciBite’s powerful solutions are supporting scientists and researchers.
Explore expert insights, articles, and thought leadership on scientific data challenges.
Discover our whitepapers, spec sheets, and webinars for in-depth product knowledge.
Explore SciBite’s full suite of solutions to unlock the potential of your data.
SciBite / Knowledge Hub / Resources / Using phenotype triangulation to improve disease understanding [Use Case]
Phenotypic similarity between diseases is an important factor in biomedical research since similar diseases often share similar molecular origins. This forms the basis of an inference-led approach to disease characterisation known as Phenotype Triangulation.
However, evidence of disease similarity is often hidden within unstructured biomedical literature and often not presented as direct evidence, necessitating a time consuming and costly review process to identify relevant linkages. Such linkages are particularly challenging to find for rare diseases for which the amount of existing research to draw from is still at a relatively low volume.
SciBite has developed a method that combines Semantic Analytics and Machine Learning to unlock the potential of biomedical literature and successfully predict disease relationships without any prior knowledge of the diseases, based on the strength of indirect evidence.
To learn more, download the full use case.
"*" indicates required fields