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The past two decades have seen an increase in drug resistance rates in cancer and chronic 
disease and a rise in multi-drug resistant infectious diseases. Coupled with continued population 
growth, there is a clear and urgent need for new and eff ective therapeutics. Following years of 
signifi cant growth, Pharmaceutical companies are witnessing reduced sales growth rates and are 
facing increasing cost pressures from both payers and competitors1. Adding to this, the average 
cost of de novo drug development is now in excess of $2.5 billion and continues to grow2. While 
there has been an upturn in drug approvals in recent years3, productivity is not keeping up with 
increasing R&D costs.

1   For example see: http://www.ey.com/Publication/vwLUAssets/EY-beyond-borders-2016/$FILE/EY-beyond-borders-2016.pdf and https://www.statista.com/topics/1764/global-pharmaceutical-industry/

2  Dimasi J. A., Grabowski H. G., & Hansen R. W. (2016). Innovation in the pharmaceutical industry: New estimates of R&D costs. Journal of Health Economics, 47, 20-33 Dimasi J. A., Grabowski H. G., & Hansen R. W. (2016). 
Innovation in the pharmaceutical industry: New estimates of R&D costs. Journal of Health Economics, 47, 20-33.

3   For example, see: http://cmr.clarivate.com/pdf/2016_CMR_Executive_Summary.pdf

4   Ashburn T.T. and Thor K.B. (2004). Drug repositioning: identifying and developing new uses for existing drugs. Nature Reviews Drug Discovery 3:673-683. 

5  Strahl C., Blackburn E. H. (1996). Effects of reverse transcriptase inhibitors on telomere length and telomerase activity in two immortalised human cell lines. Mol. Cell. Biol. 16:53–65. 

6  Elvidge, S. (2016). Getting the drug repositioning genie out of the bottle. Life Sci. Leader 14-18; Novac N., (2013). Challenges and opportunities of drug repositioning. Trends Pharmacol. Sci. 34:267-272; Smith, R.B. (2012). 
Repositioned drugs: integrating intellectual property and regulatory strategies. Drug Discovery Today: Therap. Strat. 8(3):131-137. 

7  Tobinick E.L. (2009). The value of drug repositioning in the current pharmaceutical market. Drug news & perspectives 22:119-125. 

8  Barratt M.J., Frail D.E. (2012). Drug Repositioning: Bringing New Life to Shelved Assets and Existing Drugs. Hoboken, NJ: John Wiley & Sons. 

Due to rising development costs, owing in no small 
part to a continued reliance on costly high throughput 
in vitro screening, a growing number of biotechs 
and pharmaceutical companies are turning to Drug 
Repositioning Repurposing and Rescue (hereafter referred 
to simply as ‘Drug Repositioning’). The reasoning behind 
this is to improve the effi  ciency of the development process 
and maximise the value of their R&D investments by 
focussing on drugs that have near-term clinical potential. 
The goal of Drug Repositioning is to discover new uses for 
drugs to treat clinical indications other than those for which 
they were originally intended4. 

Drug Repositioning can also be applied to molecules that 
are in the development pipeline or to rescue assets that 
underwent some incomplete initial development and have 
a proven safety profi le but were mothballed for business 
reasons, such as a change in therapeutic focus, yet remain 
an important asset to the company. 

For example AZT was originally developed with the goal of 
treating cancer, but was repositioned and approved for use 
as a treatment for HIV5. 

Targeted re-use of drugs can bring new therapies to market 
in approximately half the budget and time required by 
the traditional drug development cycle6. This is typically 
because candidates for repositioning have pre-existing 
effi  cacy, pharmacokinetic, pharmacodynamic, toxicity 
and dosing data, often coupled with well characterised 
biological knowledge – all of which is costly and time-
consuming to obtain for 
a new molecular entity (NME)7.

The risks associated with development can also be 
signifi cantly reduced due to a higher probability of success 
and reduced attrition – 25% of phase 2 candidates succeed 
to approval, compared with just 
10% for a NME8.



In 2013, new indications for existing drugs accounted for 
20% of the products introduced9. Drug Repositioning also 
has the potential to extend patent exclusivity and raises the 
possibility to outlicense rights to the new indication10.

The past 20 years have also seen increasing interest in rare 
diseases – defi ned as diseases that aff ect fewer 1:1500 
people in the US. Even though the use of Next Generation 
Sequencing (NGS)-based profi ling of patients to identify 
underlying genetic variations has resulted in greater 
numbers of people being diagnosed with rare diseases, the 
R&D costs associated with developing a de novo therapy 
make it intractable to develop new drugs for rare diseases. 
Because of this, Drug Repositioning has received attention 
and support at the national government level in many 
countries, including economic incentives and streamlined 
regulatory pathways to encourage pharma to invest in the 
development of rare disease therapies, such as the US FDA 
Orphan Drug Act (ODA) and legislation in Japan, Australia 
and Europe11. These factors have led to the strategy of 
‘indication hopping’ – initially targeting a disease area that 
attracts fi nancial incentives then, once approval is gained, 
repurpose it for related indications and increasing the 
overall value of the drug12. 

Hence, Drug Repositioning has the potential to provide 
a better return on investment than an NME and has 
the potential to provide patients with access to better 
therapeutics, with limited side eff ects in a more timely 
manner and deliver treatments that are more aff ordable for 
large, otherwise unserved patient communities13.

9  Graul A.I., Cruces E. and Stringer M. (2014). The year’s new drugs and biologics, 2013: Part I, Drugs Today (Barc) 50(1):51-100; Rodriguez-Esteban R.A. (2016). 
A drug-centric view of drug development: how drugs spread from disease to disease. PLoS Comput. Biol. 12:e1004852. 

10  Mucke H.A.M. and Mucke E. (2015). Sources and targets for drug repurposing: landscaping transitions in therapeutic space. Drug Repurps. Rescue Reposition 1: 22-27 ; Vanhaelen Q., Mamoshina P., Aliper AM., 
Artemov A., Lezhnina K., Ozerov I., Labat I. and Zhavoronkov A. (2016). Design of efficient computational workflows for in silico drug repurposing. Drug Discovery Today 22:210-222. 

11  Tambuyzer E. (2010). Rare diseases, orphan drugs and their regulation: questions and misconceptions. Nat. Rev. Drug Discov. 9:921-929; Melnikova I. (2012). Rare diseases and orphan drugs. Nat. Rev. Drug Discov. 
11(4):267-8. 

12  Shelley S. (2016). http://pharmaceuticalcommerce.com/brand-marketing-communications/the-business-of-orphan-drugs-is-booming/. Published on August 26, 2015. Accessed on August 23rd, 2017.

13  Deotarse P., Jain A., Baile M., Kohle N. and Kulkarni A. (2015). Drug repositioning: A review. International Journal of Pharma Research & Review 4:51-58; Njogu P.M. and Chibale K. (2013). Recent developments in rationally 
designed multi-target antiprotozoan agents. Curr. Med. Chem. 20(13):1715-1742; Tartaglia L.A. (2006). Complementary new approaches enable repositioning of failed drug candidates. Exp. Opin. Investiga. Drugs 
15(11):1295-1298. 

14  Ghofrani H.A., Osterloh I.H. and Grimminger F. (2006). Sildenafil: from angina to erectile dysfunction to pulmonary hypertension and beyond Nat. Rev. Drug Discov. 5(8):689-702. 

15  Gormley G.J., Stoner E., Bruskewitz R.C, Imperato-McGinley J., Walsh P.C., McConnell J.D., Andriole G.L., Geller J., Bracken B.R., Tenover J.S., et al. (1992) The effect of finasteride in men with benign prostatic hyperplasia. 
The Finasteride Study Group. N. Engl. J. Med. 327:1185-1191. 

16  Li Y.Y., An J. and Jones S.J.M. (2011). A computational approach to finding novel targets for existing drugs. PLoS Computational Biology 7:e1002139. 

17  Wu Z., et al. (2013). Network-based drug repositioning. Mol. BioSyst. 9:1268-1281; Zou J., et al. (2013). Advanced systems biology methods in drug discovery and translational biomedicine. BioMed Res. Int. 742835.

18  Jahchan N.S., Dudley J.T., Mazur P.K., Flores N., Yang D., Palmerton A., et al. (2013). A drug repositioning approach identifies tricyclic antidepressants as inhibitors of small cell lung cancer and other neuroendocrine 
tumors. Cancer Discov. 3(12):1364-1377.

19  Dudley J.T., Sirota M., Shenoy M., Pai R.K., Roedder S., Chiang A.P., Morgan A.A., Sarwal M.M., Pasricha P.J. and Butte (2011). Computational repositioning of the anticonvulsant topiramate for inflammatory bowel disease. 
Science Trans. Med. 3:96ra76.

There have been several high profi le and highly profi table 
examples of repositioned drugs. For example, sildenafi l 
was originally developed as a treatment for angina but the 
resulting side eff ects revealed an opportunity to reposition 
it for male erectile disfunction. It is now marketed by 
Pfi zer as the blockbuster drug Viagra, in addition to its 
subsequent approval for pulmonary hypertension14. 
Finasteride was developed to treat benign prostatic 
hyperplasia, but was observed to have a side eff ect of hair 
growth and is now used as a treatment for male pattern 
baldness15. However, these examples are a result of 
serendipity rather than design. 

Testing all drugs against all targets experimentally is 
currently infeasible due to cost and technical constraints16. 
A more rational approach to Drug Repositioning is to apply 
the knowledge of one drug to better characterise another. 
The exponential growth of data from ‘omics’ initiatives 
has resulted in detailed biological pathway maps, drug 
profi les and disease phenotypes. These, coupled with 
the availability of increasingly powerful computational 
resources to identify patterns and relationships, has 
made computational approaches to repositioning a 
viable proposition17. For example, in silico repositioning 
has highlighted tricyclic antidepressants as potential 
inhibitors of small lung cancer18 and a possible use of the 
anticonvulsant Topiramate to treat irritable bowel disease19.

However, the majority of computational repositioning 
initiatives have been limited to one or two types of data, 
such as identifying drugs with similar chemical structures 
or drugs that have similar gene expression profi les.



This whitepaper describes how Semantic Analytics enables 
a scalable, integrated approach to Drug Repositioning, 
releases the potential of and will enable Pharmaceutical 
companies to: 
• Unlock the wealth of diverse unstructured qualitative 

biomedical content 
• Integrate data across silos and across data types 
• Develop a deep and rich understanding of their drugs, 

their targets and their interactions

… and ultimately to undertake more eff ective Drug 
Repositioning initiatives, faster and at a lower cost. 

Enabling an integrative, data-driven approach 
to drug repositioning 
To be eff ective, a Drug Repositioning strategy must be built 
on several critical foundations. Namely the ability to: 
• Incorporate a range of diverse data types 
• Unlock the potential of unstructured, qualitative scientifi c 

content including publications, patents and the content of 
electronic laboratory notebooks

• Contextualise data and make connections across 
disparate data sources 

Each of these is described below.

Incorporating a range of data sources
As outlined below, several types of data, including both 
drug and disease-based data, can be used to inform Drug 
Repositioning strategies20. 

Structural Data 
Many drugs bind multiple targets and therefore aff ect 
multiple pathways. This phenomenon is referred to as drug 
promiscuity, which can in turn lead to the identifi cation of 
secondary indications for a drug21. The theory that drugs 
with similar chemical structures can have similar biological 

20  For detailed reviews see Hodos R.A., Kidd B.A., Shameer J., Readhead B.P. and Dudley J.T. (2016). In silico methods for drug repurposing and pharmacology. WIREs Syst Biol Med. 8(3):186-210; and also Li J., Zheng S., 
Chen B., Butte A.J., Swamidass S.J. and Lu Z. (2016). A Survey of Current Trends in Computational Drug Repositioning. Briefings in Bioinformatics 17(1): 2-12.

21  Haupt V.J., Daminelli S. and Schroeder M. (2013). Drug discovery: predicting promiscuity. Nature 462:167-168; Dudley J.T., Sirota M., Shenoy M., Pai R.K., Roedder S., Chiang A.P., Morgan A.A., Sarwal M.M., Pasricha P.J. 
and Butte (2011). Computational repositioning of the anticonvulsant topiramate for inflammatory bowel disease. Science Trans. Med. 3:96ra76.

22  Keiser M.J., Setola V., Irwin J.J., Laggner C., Abbas A.I., Hufeisen S.J., Jensen N.H., et al. (2009). Predicting new molecular targets for known drugs. Nature 462(7270):175-181; Sanseau P. and Koehler J. (2011). Editorial: 
Computational methods for drug repurposing. Briefings in Bioinformatics 12(4):301-302.

23  Moriaud F., Richard S.B., Adcock S.A., Chanas-Martin L., Surgand J.-S., Jelloul M.B. and Delfaud F. (2011). Identifying drug repositioning candidates by mining the protein data bank. Briefings in Bioinformatics 12(4):336-
340; Li Y.Y., An J. and Jones S.J.M. (2011). A computational approach to finding novel targets for existing drugs. PLoS Computational Biology 7:e1002139.

24  Vanhaelen Q., Mamoshina P., Aliper AM., Artemov A., Lezhnina K., Ozerov I., Labat I. and Zhavoronkov A. (2016). Design of efficient computational workflows for in silico drug repurposing. Drug Discovery Today 22:210-222.

25  Hodos R.A., Kidd B.A., Shameer J., Readhead B.P. and Dudley J.T. (2016). In silico methods for drug repurposing and pharmacology. WIREs Syst Biol Med. 8(3):186-210.

26  Furr B.J.A. and Jordan V.C. (1984). The pharmacology and clinical uses of tamoxifen. Pharmacol. Ther. 25:127-205.

27  Lamb J., Crawford E.D., Peck D., Modell J.W., Blat I.C., et al. (2006). The connectivity map: using gene-expression signatures to connect small molecules, genes, and disease. Science 313(5795): 1929-1935.

28  Vidovic D., Koleti A. and Schurer S.C. (2014). Large-scale integration of small molecule-induced genome-wide transcriptional responses, Kinome-wide binding affinities and cell-growth inhibition profiles reveal global 
trends characterizing system-level drug action. Front. Genet. 5:342.

activities (the Similar Property Principle) is the basis for 
virtual screens to identify drugs with known indications that 
are structurally similar to a drug of interest, and then apply 
the original drug of interest to those indications22. Likewise, 
molecular docking and virtual screens based on drug target 
binding site similarity can be used to identify secondary 
targets involved in other indications, thus identifying new 
repositioning opportunities23. 
Screens based on drug and target binding site similarity 
require reliable 2D and 3D molecular structures, 
which are not always available24, for example there are 
experimental limitations to obtaining full 3D structural 
data for membrane-bound proteins25. When using 
chemical structural data in this way, it’s important to use 
the appropriate active form of a drug for analysis. For 
example, many drugs, such as tamoxifen, are administered 
as pro-drugs or undergo uncharacterized chemical 
transformations after metabolism to achieve their active 
form26. 

Genomic Data 
The fact that many genes are pleiotropic in nature and 
infl uence two or more seemingly unrelated disease 
indications is the basis of genomic-based approaches 
to identifying repositioning opportunities, such as 
comparing the gene expression profi les derived from 
two drugs. Several resources exist to aid genomic-based 
Drug Repositioning strategies, including Connectivity Map 
(CMap27) which includes thousands of gene expression 
profi les induced by a wide range of FDA approved drugs, 
and the Library of Integrated Network-Based Cellular 
Signatures (LINCS28).



CMap and LINCS can be used to identify a ‘signature’ – a 
pattern of genes that are up- and down-regulated in a given 
disease which can be used to identify other diseases that 
induce similar patterns. The theory behind the so-called 
guilt-by-association (GBA) method is that drugs used to 
treat one disease may be repositioned to treat diseases 
with a similar signature29. Similarly, signature inversion is 
based on the rationale that drugs that induce a particular 
gene expression signature may be used to treat diseases 
that have the opposite signature30. 

However, this gives no consideration of underlying 
mechanism and care must be taken to ensure that 
expression profi le associated with a disease is not a 
consequence of the disease state rather than its cause. 
In addition, diseases that involve multiple tissues and/or 
organ systems may not be amenable to approaches that 
rely on the genomic expression profi les of isolated cell lines. 

Disease and Phenotypic Data 
Disease-based approaches are based on the premise that 
if two diseases share multiple approved drugs, any drugs 
approved for only one of the diseases could potentially be 
used as a treatment for the other disease31. 

Phenotypic-based approaches to Drug Repositioning focus 
on disease commonalities between diseases, such as co-
morbidities, and analysis of side eff ect similarities. Side 
eff ects normally have negative connotations, but analysis of 
the side eff ects associated with a drug, such as those found 
in the Side Eff ect Resource (SIDER), can suggest possible 
new therapeutic areas for repositioning. For example, drugs 
with similar side eff ect profi les to known drugs or drug 
classes, may have a common mechanism of action32. 

This approach can be limited by the fact that the full side 
eff ect profi le of a drug is unlikely to be known until after 
many years of post-market surveillance and the fact that 
the same side eff ect can occur for diff erent reasons. 

29  Iorio F., Rittman T., Ge H., Menden M. and Saez-Rodriguez J. (2013). Transcriptional data: a new gateway to drug repositioning? Drug Discovery Today 18:350-357.

30  Dudley J.T., Sirota M., Shenoy M., Pai R.K., Roedder S., Chiang A.P., Morgan A.A., Sarwal M.M., Pasricha P.J. and Butte (2011). 
Computational repositioning of the anticonvulsant topiramate for inflammatory bowel disease. Science Trans. Med. 3:96ra76.

31  Chiang A.P., Butte A.J. (2009) Systematic evaluation of drug-disease relationships to identify leads for novel drug uses. Clin. Pharmacol Ther. 86:507-510.

32  Yang L. and Agarwal P. (2011). Systematic drug repositioning based on clinical side-effects. PLos ONE 6(12):e28025.

33  Zhang P., Wang F., Hu J. and Sorrentino R. (2013) Exploring the relationship between drug side-effects and therapeutic indications. AMIA Annu. Symp. Proc. 1568-1577.

34  Huang L., Li F., Sheng J., Xia X., Ma J., Zhan M. and Wong S.T.C. (2014). Drugcomboranker: drug combination discovery based on target network analysis. Bioinformatics 30:i228-i236.

35  Sun Y., Xiong Y., Xu Q. and Wei D. (2014). A hadoop-based method to predict potential effective drug combination. BioMed Research International 2014:196858.

36  Andronis C., Sharma A., Virvilis V., Deftereos S. and Persidis A. (2011). Literature mining, ontologies and information visualization for drug repurposing. Briefings in Bioinformatics 12:357-368.

37  Liu, R.L. and Shih C.C. (2014). Identification of highly related references about gene-disease association. BMC Bioinformatics 15:286; Bravo A., Piñero J., Queralt-Rosinach N.A., Rautschka M. and Furlong L.I. (2015). 
Extraction of relations between genes and diseases from text and large-scale data analysis: implications for translational research. BMC Bioinformatics 16(1):55+.

38  Campillos M., Kuhn M., Gavin A.C., Jensen L.J., Bork P. (2008). Drug target identification using side-effect similarity. Science 321:263–266.

However, while it would appear to be ‘short cutting’ target 
and mechanism of action information, there are cases 
where this approach has been shown to be more predictive 
of repositioning opportunities than relying on chemical 
structure or target information33.

Many diseases are regulated by multiple signalling 
pathways, so targeting one pathway is insuffi  cient 
to successfully treat the disease. Drug combination 
strategies to treat such diseases often arise from clinical 
experience and it is not practical to consider all possible 
drug combinations when searching for repositioning 
opportunities34. However, the search can be limited to drugs 
that can be co-prescribed as they usually don’t share side 
eff ects, particularly if used in combination with genomic 
profi les to predict eff ective combinations35.

Unlocking unstructured information 
from the biomedical literature 
A plethora of information relating to associations between 
genes, targets and diseases can be found in unstructured 
biomedical sources, such as PubMed, RightFind™, 
ClinicalTrials.gov and patent databases. However, the vast 
majority of these sources are not designed with searching 
in mind. Compounding these issues, manual curation 
can’t keep up with the amount of data in the literature36

– curated information is often not available for several 
months after publication and, even then, is often only 
accessible via subscription databases. Computer-based text 
analytics off ers the possibility to access and use the content 
biomedical literature more eff ectively and capture data that 
may have been missed by manual curation37. For example, 
text analytics has been used to analyse the unstructured 
text within drug labels to infer whether two drugs share the 
same target38. However, many computational approaches 
struggle to deal with the complexity and variability of 
unstructured scientifi c language.



Structured domain knowledge, in the form of high quality 
biomedical vocabularies and ontologies such as ChEMBL 
(bioactive molecules) and MeSH (disease classifi cations) 
provides a common language and framework for mapping 
biological relationships. It can range from simple lists 
containing all of the known terms for the same real world 
“thing” to hierarchical groupings and classifi cations of 
scientifi cally-related concepts. But no single vocabulary or 
ontology is comprehensive in either depth or breadth. For 
example, no single vocabulary encompasses every possible 
term or phrase used for every indication. Biomedical 
vocabularies and ontologies often have diff erent purposes 
and can be mutually inconsistent, with the result that they 
are poorly integrated with each other39. An integrative, 
data-driven approach to Drug Repositioning requires the 
integration of multiple complementary ontologies, enabling 
the identifi cation of all possible uses and variants of a term 
of interest.

Semantic analytics: contextualizing 
and linking data
Whilst several initiatives have integrated data from 
multiple sources to create secondary data sources, such as 
DisGeNET40 and Malacards41, there isn’t a single defi nitive 
source of data for Drug Repositioning, and the trend 
is for information to be unstructured and increasingly 
decentralized, with new sources of valuable data arising 
every year. 

While each of the individual data types and sources 
described above can yield valuable clues for Drug 
Repositioning, using multiple data sources can give 
a clearer picture of a drug and its eff ects, and lessen 
the potential noise or bias of any one source. Some 
repositioning initiatives have combined structural data 
with other types of data, e.g. chemical similarity plus side 
eff ect data or drug-target interactions and gene similarity 

39  Mullen, J., Cockell S.J., Woollard P. and Wipat A. (2016). An integrated data driven approach to drug repositioning using gene-disease associations. PLoS One 11(5):e0155811.

40  Bauer-Mehren A., Rautschka M., Sanz F. and Furlong L.I. (2010). DisGeNET: a Cytoscape plugin to visualize, integrate, search and analyze gene-disease networks. Bioinformatics 26(22):2924-2926.

41  Rappaport N., Twik M., Nativ N., Stelzer G., Bahir I., Stein T.I., et al. (2014). MalaCards: A comprehensive automatically-mined database of human diseases. Current protocols in bioinformatics/editorial board, Andreas D. 
Baxevanis et al. 47:1.24-1.24.19.

42  For example see Wang Y., Chen S., Deng N., et al. (2013). Drug repositioning by kernel-based integration of molecular structure, molecular activity, and phenotype data. PLoS One 8(11):e78518; Tan F.J., Yang R.Z., Deng N., 
et al. (2014). Drug repositioning by applying ‘expression profiles’ generated by integrating chemical structure similarity and gene semantic similarity. Mol. Biosys. 10(5):1126-1138.

43  Chen B., Ding Y. and Wild D.J. (2012). Assessing drug target association using semantic linked data. PLOS computational biology 8(7):e1002574; He B., Tang J., Ding J., Wang H., Sun Y., Shin J.H. et al. (2011). Mining relation-
al paths in integrated biomedical data. PLoS One 6(12):e27506+; Lee H.S. et al. (2012). Rational drug repositioning guided by an integrated pharmacological network of protein, disease and drug. BMC Syst. Biol. 6:80.

44  Hoehndorf R., Oellrich A., Rebholz-Schuhmann D., et al. (2012). Linking PharmGKB to phenotype studies and animal models of disease for drug repurposing. Pac. Symp. Biocomput. 388-399.

45  Li J., Zheng S., Chen B., Butte A.J., Swamidass S.J. and Lu Z. (2016). A Survey of Current Trends in Computational Drug Repositioning. Briefings in Bioinformatics 17(1): 2-12.

46  Betzler N., van Bevern R., Fellows M.R., Komusiewicz C. and Niedermeier R. (2011). Parameterized algorithmics for finding connected motifs in biological networks. 
IEEE/ACM Transactions on Computational Biology and Bioinformatics/IEEE, ACM 8(5):1296-1308.

47  Li J., Zhu X., Chen J.Y. (2009). Building disease-specific drug-protein connectivity maps from molecular interaction networks and PubMed abstracts. PLoS Comput. Biol. 5:7 e1000450..

48  For example, see: Napolitano F., Zhao Y., Moreira V.M., Tagliaferri R., Kere J., D’Amato M. and Greco D. (2013). Drug repositioning: A machine-learning approach through data integration. J. Cheminformatics 5:30.

data42. However, rather than limit a search to one or two 
types, such as drug-disease or drug-gene interactions, the 
ability to combine drug, target and disease information 
provides the basis for a more holistic approach and greater 
confi dence in the results43. For example, it is possible to 
infer a drug-disease association based on linking genotype-
disease and drug-gene information44. However, achieving 
a holistic approach has been hindered by the challenges 
associated with integrating heterogeneous measurements 
and/or diverse data sources45.

The vocabularies and ontologies described in the previous 
section are the foundation for Semantic Analytics, which 
applies an explicit, unique meaning and description to a 
term. The application of Semantic Analytics to unstructured 
text enables it to be contextualised, understood and 
used as high quality, actionable data, irrespective of its 
source. The ability to uniformly contextualise data by 
semantic enrichment provides the basis for linking data 
from heterogeneous biomedical sources. It facilitates 
the generation of a network, or semantic model, of 
interconnected facts which provides a convenient way 
to represent the integrated data necessary to identify 
repositioning opportunities46. For example, disease-specifi c 
drug-protein connectivity maps can be generated by 
integrating protein interaction data with literature mining. 
Based on this approach, diltiazem (an anti-hypertensive 
agent) and quinidine (an anti-arrhythmia agent) were 
proposed as candidate treatments for Alzheimer’s disease47.

In addition, there has been growing interest in applying 
machine learning techniques to Drug Repositioning, by 
identifying patterns indicative of a drug interacting with a 
target and use classifi cation and learning to predict new 
indications for the drug48.



Despite signifi cant advances in the technology, 
sophisticated tools such as machine learning ultimately 
rely on good data. Semantic enrichment provides the 
contextualised data necessary to enable machine learning 
to be eff ective. 

Semantic Analytics enables the detection of relevant 
information within unstructured biomedical literature 
enabling text to be treated as data. As the examples in the 
following section illustrate, leveraging biomedical literature 
in this way provides the rich, interconnected evidence 
necessary to support a data-driven approach to Drug 
Repositioning via the accumulation, integration and analysis 
of a disparate set of data sources and data types. 

Applying semantic analytics to drug 
repositioning 
The ability to contextualize unstructured biomedical 
literature and to treat the resulting data as an integral 
part of a Drug Repositioning strategy is fundamental to 
achieving the holistic view necessary to identify all potential 
repositioning opportunities and make well informed 
decisions. This section provides examples of how SciBite’s 
Platform enables a systematic, data-driven approach to 
Drug Repositioning, including the ability to rapidly review 
of all available information via user-focussed scientifi c 
browsing and also how it forms the basis of a more 
automated, large scale analyses. 

User-focused scientifi c browsing to validate 
potential repositioning opportunities 
Drug repositioning initiatives that focus on one or two 
data types can yield long lists of potential indications for 
repositioning, each of which requires further investigation. 
Validating some of the options may be possible by 
connecting people with relevant knowledge, such as 
experts on a given drug target and experts in each disease, 
but a more comprehensive evaluation typically requires 
a lengthy literature search. However, relying on full text 
searches of biomedical resources such as PubMed and 
patents to reveal important relationships or trends is risky 
and time consuming due to the siloed disconnected nature 
of these sources. 

Semantic Analytics can highlight areas for focus. For 
example, a virtual screen based on chemical structure of a 
drug of interest can identify similar drugs associated with 
other indications. The resulting list of indications can be 
used to mine a semantic network to identify drug targets 
associated with i) each of the structurally similar drugs 
and/or ii) each of the associated indications. Indications 
associated with one or more targets in common with the 

49  Andronis C., Sharma A., Virvilis V. et al. (2011). Literature mining, ontologies and information visualization for drug repurposing. Brief. Bioinform. 12(4):357-368.

drug of interest can be prioritized as being the most likely 
initial candidates for further investigation. 
The interconnected nature of data within a semantic 
network makes it simple to collate all known information 
about a disease of interest, thus increasing the amount of 
evidence available to resulting in a more validated line of 
enquiry. Rather than relying on static, manually curated 
information, the knowledge encapsulated in SciBite’s 
semantic network grows over time. 

Connecting additional data sources containing information 
such as patent life, toxicity, mode of action, route of 
delivery and other chemical or disease-specifi c information 
can provide valuable input into the prioritization of Drug 
Repositioning opportunities49 and can help rule out things 
that don’t make sense. For example, drugs that require 
specialist storage and testing requirements would not be 
realistic candidates for repositioning to treat infectious 
diseases in more remote parts of the world. Similarly, 
the inclusion of drug approval information can identify 
indications where a drug was approved in some regions but 
not others.

Coupled with information about repositioning successes 
and failures, a growing corpus of connected information 
can also be used to identify the characteristics associated 
with repositionable drugs and indications, which can help 
refi ne future repositioning initiatives. 

Comprehensive semantic analytics to identify 
new repositioning opportunities 
The benefi ts of applying Semantic Analytics to Drug 
Repositioning activities can be illustrated using the drug 
Rivastigmine as a real-world example. A traditional 
approach to repositioning would involve the following high 
level activities: 
1. A search of DailyMed results in over 20 labels. Reading 

each of these reveals that Rivastigmine is used as a 
treatment for dementia associated with Alzheimer’s and 
Parkinson’s disease 

2. A review of the ChEMBL record for the mechanism of 
action of Rivastigmine reveals that it is an inhibitor of 
acetylcholinesterase (ACHE) and butyrylcholinesterase 
(BCHE). 

3. Individual searches of DisGeNET for both ACHE and BCHE 
generates a list of over 40 indications associated with 
these two protein targets 

4. Reducing the list to those indications that have the most 
similar phenotypes to the on-label drug indications from 
DailyMed involves a thorough review of the information 
associated with each of the 40 indications associated with 
ACHE and BCHE



This is a laborious manual process which is reliant on 
human judgement and therefore susceptible to human 
fallibility. Reviewing reams of information over several days 
increases the likelihood of the reviewer missing one or 
more of the linkages. 

Using Semantic Analytics associations between drugs, 
targets and indications can generate a knowledge network 
which integrates data from diff erent sources. For example, 
SciBite’s platform integrates structured sources with 
unstructured biomedical literature into network analyses, 
providing a much richer picture and revealing more 
associations than relying on structured data alone.

Figure 5: A semantic network generated by the SciBite platform and visualised using Linkurious50 illustrating relationships between the Drug 
Rivastigmine (green node), drug targets from ChEMBL associated with Rivastigmine (ACHE and BCHE; orange nodes) and all indications associated 
with these drug targets from DailyMed and DisGeNET (pink nodes).

50  https://linkurio.us



Rather than read the literature on each of the indications, 
applications such as SciBite’s TERMite51 can be used 
to extract disease-phenotype information from the 
biomedical literature. By applying a fi lter for those 
indications with similar phenotype profi les to the on-
label drug indications52, it is possible to rapidly reduce 
the number of potential indications. Specifi cally, such 
analysis reveals Multiple Sclerosis (MS) as a candidate for 
repositioning of Rivastigmine based on a mechanism of 
action associated with the target BCHE and a phenotypic 
similarity to Alzheimer’s Disease. Phenotype connections 
that were relevant to this analysis were mainly those 
associated with cognitive impairment, recognised as a 
frequent symptom with MS and, more obviously, with AD.

A review of DrugBank doesn’t provide any evidence for 
a link between Rivastigmine and MS. Indeed, a search of 
the biomedical literature for publications mentioning both 
Rivastigmine and any disease indication ranks MS low on 
the list.

51  https://www.scibite.com/products/termite/

52  A white paper entitled “Biological knowledge networks and phenotype triangulation” describing the calculation and application 
of phenotypic similarity measures to semantically enriched data can be obtained from SciBite on request.

53 http://www.scibite.com/products/docstore/

Figure 2: The potential relationship between Rivastigmine and MS is 
only revealed through connected data sources

Figure 3: A search for Rivastigmine in the biomedical literature using DOCStore53 ranks Multiple Sclerosis at number 33 in the list of most 
frequently co-occurring disease indications.



Without an integrated approach which leveraged both 
structured data sources and unstructured biomedical 
literature, the identifi cation of MS as a potential 
repositioning opportunity would have taken signifi cant 
manual eff ort and could have easily remained hidden in the 
ever-increasing volume of biomedical literature.

For validation, a DOCstore sentence co-occurrence search 
enables us to effi  ciently focus in on publications mention 
Rivastigmine in the context of MS. We can see that trials 
have indeed been conducted into the use of Rivastigmine in 
the treatment of cognitive processing in patients with MS54

(Figure 4).

Related applications of semantic analytics 
The inclusion of contextualised biomedical literature as 
part of a holistic approach to Drug Repositioning results 
in a wealth of context-rich knowledge that can be applied 
to other areas of Drug Development. For example, the 
inclusion of safety information in SciBite’s semantic 
network can not only be used to identify diseases 
with similar side eff ect profi les, but can also be used 
as the foundation for an eff ective Pharmacovigilance 
surveillance55. Better connected data can also identify new 
opportunities for an existing drug, such as the implications 
of a newly published drug delivery technology or of changes 
in regulations in diff erent geographic markets. 

Many of the top 10 drugs in the US help as few as 1:25 
of patients prescribed them56, in no small part due to 
the bias towards white Western participants in clinical 
trials. Precision medicine is based on the ability to stratify 
diseases into molecular subtypes and treat patients drugs 
targeted to their specifi c disease subtype will improve 
specifi city and effi  cacy57. Rather than treating all patients 
of a diseases as a homogenous group, the ability to identify 
and distinguish individual molecular subtypes provides the 
granularity needed to use semantic networks to identify 
potential treatments for specifi c subsets of patients. The 
increasing availability of detailed patient-level information 
will provide an opportunity to identify and tailor treatments 
for an individual58.

Figure 4: DOCStore sentence co-ocurrence search to highlight studies around Rivastigmine in the treatment of MS symptoms

54  Huolman, S. et al (2011). The effects of Rivastigmine on processing speed and brain activation in patients with multiple sclerosis and subjective cognitive fatigue. 

55 For example, see http://www.scibite.com/ library-items/semantic-analytics-an-integrated-approach-for-pharmacovigilance-teams-to-achieve-total-awareness-2/

56 Schork N.J. (2015). Personalized medicine: Time for one-person trials. Nature 520:609-611.

57 Li Y.Y., An J. and Jones S.J.M. (2011). A computational approach to finding novel targets for existing drugs. PLoS Computational Biology 7:e1002139.

58 Hodos R.A., Kidd B.A., Shameer J., Readhead B.P. and Dudley J.T. (2016). In silico methods for drug repurposing and pharmacology. WIREs Syst Biol Med. 8(3):186-210.



Press releases and other sources of news are also 
valuable inputs into a systematic Drug Repositioning 
strategy. For example, if a news article links a competitor’s 
drug to a specifi c target and indication, then internally 
developed drugs that have the same target but are 
being used to treat a diff erent indication are potential 
candidates for the competitor’s indication. 

Semantic networks containing investigator 
information can help identify relevant expertise, 
foster collaboration both internally and externally 
and identify potential external partners. Similarly, 
greater awareness of the therapeutic and competitive 
landscape can be achieved by incorporating news 
and press release information, providing valuable 
information to help focus an acquisition strategy. 

Summary 
Drug Repositioning is an effi  cient and cost eff ective 
alternative to de novo drug development and can 
accelerate the provision of new, safe treatments to 
underserved patient communities. However, traditional 
approaches to Drug Repositioning rely on structured 
data sources, sometimes supplemented by searches 
of the literature. Due to the manual, time consuming 
nature of such searches, they are limited in scope 
and miss potentially important information. 

Semantic Analytics facilitates the rapid identifi cation of 
drug-target-indication relationships from a wide range 
of heterogeneous and cross-disciplinary sources. The 
SciBite Platform makes Semantic Analytics accessible to 
Pharmaceutical companies, expedites the identifi cation 
and prioritisation of all possible repositioning options 
associated with one or more drugs of interest and ensures 
decisions are based on all the available evidence.



SciBite’s data-first, semantic analytics software is 
for those who want to innovate and get more from 
their data. At SciBite we believe data fuels discovery 
and we are leading the way with our pioneering 
infrastructure that combines the latest in machine 
learning with an ontology-led approach to unlock the 
value of scientific content. Supporting the world’s 
leading scientific organisations with use-cases from 
discovery through to development, SciBite’s suite of 
fast, flexible, deployable API technologies empower 
our customers, making it a critical component in 
scientific, data-led strategies. Contact us to find 
out how we can help you get more from your data. 

To learn how SciBite can unlock the value 
of your data, speak to one of our experts 
today or email us at contact@scibite.com
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