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The struggle to eff ectively utilise the increasing volumes of data available is a common 
challenge in the Life Sciences research industry. Artifi cial Intelligence (AI) is frequently 
touted as a potential solution to extract valuable insights from large volumes of 
heterogeneous data. However, tangible successes to date have been relatively few. 
Areas bearing the greatest demonstrable success often utilise machine learning (ML), 
yet even these are at the mercy of the quality of the source data. Scientifi cally naive systems 
struggle to deal with the complexity and variability of unstructured scientifi c language. 
In a recent survey of over 16,700 data scientists, the most commonly cited challenge to 
undertaking machine learning was “dirty data”.

According to the Pistoia Alliance, “Maybe the biggest 
hindrance to using AI/ML eff ectively is both the volume 
and quality of data that exists. The models that are 
being built will only be as good as the data that has been 
used… As an industry are we being overly optimistic and 

simplistic about the quality of data that we are feeding our 
smart new AI/ML pipelines?”.
To illustrate this problem, the fi gure below lists a selection 
of the many varied words and phrases scientists use to 
refer to the term ‘male’.

Figure 1: A selection of the many diff erent terms used to describe ‘male’. Courtesy of N. Silvester, European Nucleotide Archive, EMBL-EBI



Figure 2: Inconsistent coding of data. In the example on the left, Male =1 and 0=Female. In the example on the right Female =1 and 0=Male

System designers often constrain fi elds to mitigate this risk 
but, as the next fi gure below shows, scientists can still be 
unintentionally inconsistent in the way they record their 
results (see Figure 2, below).

While both systems illustrated above may work well 
independently, but they have not been designed to be 
interoperable. The data is not adequately described, 
or ‘tagged’, which presents a challenge for downstream 
analysis. When considered in isolation, both datasets could 
be considered to be ‘clean’ but, from the perspective of a 
data aggregation project, the data is ‘dirty’. The re-use of 
data outside of it’s original source system is something 
that is often overlooked and is a problem that will get out 
of control very quickly if not correctly managed. Ensuring 
data cleanliness within a single system and ensuring it’s 
extensibility to other systems is critical to enable multiple 
sources to be aggregated.

Since AI systems generally learn by example, ‘dirty’ data 
creates a barrier to their eff ective implementation. 

For example, without comprehensive coverage of all 
possible variants of a term of interest in a training data set, 
the output of a machine learning algorithm will include a 
large number of outliers. 

Similarly, ambiguity can lead to a term being mistaken as 
the wrong type of entity. For example, ALS is used as an 
abbreviation for the disease Amyotrophic lateral sclerosis. 
However, it is also used as a synonym of the gene ‘Insulin 
Like Growth Factor Binding Protein Acid Labile Subunit’ 
(IGFALS). Thus, if we use just “leave it to the computer” a 
machine learning algorithm could mistakenly incorporate 
literature related to IGFALS into a model for the disease 
ALS, resulting in an incorrect link between ALS and insulin 
signaling with potentially dangerous consequences.

High quality, contextualised data is not only key to ensuring 
experiments are reproducible but is also a necessary 
prerequisite for AI to be eff ective and deliver accurate 
and true outputs.



SciBite: Enabling machines to learn more eff ectively

Giving AI a ‘Head Start’
SciBite contextualises unstructured scientifi c text and 
transforms it into clean, ‘self-describing’, machine-readable 
data. It uses established, controlled ontologies to apply 
an explicit, unique identifi er, meaning and description to 
scientifi c terms. This ensures that, for example, the terms 
PSEN1, Presenilin-1, AD3 and PSNL1 are all interpreted as the 
same Alzheimer’s-related gene. 

SciBite harmonises data by exploiting ontologies to automate 
semantic enrichment and annotation, whilst also coping with 
ambiguities such as synonyms, typographic errors or cryptic 
data, such as project codes, cell line IDs, and internal drug 
abbreviations. 

Without using ontologies, an AI model needs to learn 
everything from scratch. It’s akin to going into a library to 
fi nd a book without some form of classifi cation or indexing 
to guide you to its likely location. The Dewey Decimal system 
was developed to help people fi nd the right information 
faster and ontologies serve a similar purpose in science.

Since ontologies encapsulate a common model of 
knowledge associated with a given domain, they can give 
AI a ‘head start’ by identifying what is known in context of 
an existing scientifi c framework. For example, a machine 
learning algorithm doesn’t need to be ‘taught’ that Crohn’s 
is an infl ammatory disease if this relationship is already 
encapsulated in the ontology that is used to enrich the input. 
Similarly, by annotating content with the MedDRA ontology, 
the annotated concepts will be known to be adverse events, 
rather than simply predictions of something that might be.

More sophisticated pattern recognition
Many applications of AI involve pattern recognition, 
but their accuracy is highly dependent on the data being 
unambiguous. This problem can be illustrated using the 
example of training a machine learning algorithm to identify 
phrases in the biomedical literature that are indicative of 
a protein-protein interaction. For example, an algorithm 
can be trained to correctly identify that “...the binding 
of repaglinide to HSA in human plasma...” refers to an 
interaction between two entities, but one is a drug and 
the other is a protein.

Through semantic enrichment, scientifi c terms can be 
explicitly tagged with a Uniform Resource Identifi er (URI) as 
representing a particular type of entity, enabling machine 
learning algorithms to be trained to recognise that phrases 
such as “Cdc53 contains independent binding sites for 
Cdc34 and Skp1 suggesting it functions as a scaff old protein 
within an E2/E3 core complex” specifi cally refer to a protein-
protein interaction. Normalisation of data through semantic 
enrichment reduces ambiguity and amplifi es the signal, 
increasing the accuracy of pattern recognition.

A solid foundation for knowledge graphs
Knowledge graphs provide essential context for many AI 
applications. Clean, accurately described data becomes 
interoperable, provides a solid foundation from which 
to build graph models without having to worry about 
the original naming convention used by each source. For 
example, a gene mentioned in a document can be linked 
to related quantitative gene expression data via its GENE 
URI.  The workfl ows and rules used to query the knowledge 
graph will also be simpler and quicker to process. The 
resulting reduction in complexity coupled with increased 
scientifi c rigour makes the automated AI process less of 
a ‘black box’ and provides increased confi dence in the 
decisions that are made.

Increased resolution for neural networks
AI approaches typically require numerical input. However, 
a method known as word2vec can overcome this limitation 
by encoding words as numerical vectors. This enables 
queries to expressed as a mathematical operation, for 
example: melanoma – skin + brain = glioma. The accuracy 
of word2vec depends on how well the source text is 
standardised. Semantic tagging increases the resolution 
of a numeric vector for a particular word. For example, 
the word ‘hound’ is used less frequently than ‘dog’ so it’s 
numeric vector would tell you very little about its semantic 
relationships. However, if the numeric vectors of ‘hound’ 
and ‘dog’ are combined then the resolution, or semantic 
knowledge, of the vector is increased signifi cantly. 

The same applies to genes: BRCA1 is used far more 
frequently than it’s synonyms PPP1R53 or BROVCA1. 
Semantic enrichment normalises and categorises entities 
prior to training word vectors, resulting in better resolution 
and improving its discoverability. For example, it is
possible to ask questions such as ‘fi nd the indications 
most semantically similar to BRCA1’.



Figure 3: A word cloud illustrating the most discriminative features found in documents assigned to the pharmacology category 
of the FDA’s electronic Common Technical Document (eCTD) Module 4 hierarchy using SciBite’s ClassifR application

Accurate document classi� cation
The combination of semantic enrichment and AI can also 
be applied to document classifi cation problems. Semantic 
enrichment not only provides additional context to enable 
more accurate classifi cation, but can also reveal the most 
common scientifi c metadata tags and entity types associated 
with documents in a given class. For example, one class 
might include mentions of many biological processes but 

only one compound, where as another class might have a 
totally diff erent entity profi le. This helps users to understand 
why the classifi cation process has assigned a given 
document to a specifi c category, making the automated 
process less of a ‘black box’ and providing increased 
confi dence in the decisions that are made.





SciBite’s data-first, semantic analytics software is 
for those who want to innovate and get more from 
their data. At SciBite we believe data fuels discovery 
and we are leading the way with our pioneering 
infrastructure that combines the latest in machine 
learning with an ontology-led approach to unlock the 
value of scientific content. Supporting the world’s 
leading scientific organisations with use-cases from 
discovery through to development, SciBite’s suite of 
fast, flexible, deployable API technologies empower 
our customers, making it a critical component in 
scientific, data-led strategies. Contact us to find 
out how we can help you get more from your data. 

To learn how SciBite can unlock the value 
of your data, speak to one of our experts 
today or email us at contact@scibite.com
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