The identification and application of biomarkers in basic and clinical research is almost a mandatory process in any productive pipeline of a pharmaceutical organisation. Validated biomarkers play a crucial role in the prediction of clinical outcome and support the translation from candidate discovery to successful clinical treatment.
A wealth of valuable biomarker-related information is available in the biomedical literature. However, the process of discovering and validating new biomarkers depends on the ability to extract insight from this resource effectively.
SciBite uses semantic enrichment to unlock the value of unstructured text and simplify the identification of new potential biomarker leads from scientific text.
To learn more, download the full use case.
![]() |
![]() |
Technological advancements exhibit varying degrees of longevity. Some are tried and trusted, enduring longer than others, while other technologies succumb to fleeting hype without attaining substantive fruition. One constant, in this dynamic landscape is the data.
Read![]() |
![]() |
Public ontologies are essential for applying FAIR principles to data but are not built for use in named entity recognition pipelines. At SciBite, we build on the public ontologies to create VOCabs optimized for NER. In this blog, discover how we create a SciBite VOCab from a Public Ontology.
ReadGet in touch with us to find out how we can transform your data
© Copyright © 2023 Elsevier Ltd., its licensors, and contributors. All rights are reserved, including those for text and data mining, AI training, and similar technologies.