Explore SciBite’s full suite of solutions to unlock the potential of your data.
Discover how SciBite’s powerful solutions are supporting scientists and researchers.
Gartner® How to Build Knowledge Graphs That Enable AI-Driven Enterprise Applications
Explore expert insights, articles, and thought leadership on scientific data challenges.
Discover our whitepapers, spec sheets, and webinars for in-depth product knowledge.
Explore SciBite’s full suite of solutions to unlock the potential of your data.
Explore SciBite’s full suite of solutions to unlock the potential of your data.
Discover how SciBite’s powerful solutions are supporting scientists and researchers.
Gartner® How to Build Knowledge Graphs That Enable AI-Driven Enterprise Applications
Explore expert insights, articles, and thought leadership on scientific data challenges.
Discover our whitepapers, spec sheets, and webinars for in-depth product knowledge.
Explore SciBite’s full suite of solutions to unlock the potential of your data.
SciBite / Knowledge Hub / Resources / Eliminating the data preparation burden [Use case]
For most pharmaceutical companies, extracting insight from heterogeneous and ambiguous data remains a challenge. The era of data-driven R&D is motivating investment in technologies such as machine learning to provide deeper insights into new drug development strategies.
The quality of data directly impacts the accuracy and reliability of the results of computational approaches. However, the work required to achieve clean, high-quality data can be costly, often prohibitively so, requiring data scientists to spend the majority of their time as ‘data janitors’, rather than actually analysing data.
SciBite provides an integrated, cost-effective solution to significantly reduce the time and cost associated with the process of data cleansing, normalisation and annotation. The output ensures that downstream integration and discovery activities are based on high-quality, contextualised data.
To learn more, download the full use case.
"*" indicates required fields